

Mark Scheme (Results)

Summer 2012

GCE Mathematics 6667 Further Pure 1

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information, please visit our website at www.edexcel.com.

Our website subject pages hold useful resources, support material and live feeds from our subject advisors giving you access to a portal of information. If you have any subject specific questions about this specification that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

www.edexcel.com/contactus

Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2012
Publications Code UA032237
All the material in this publication is copyright
© Pearson Education Ltd 2012

Summer 2012 6667 Further Pure Maths 1 FP1 Mark Scheme

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

EDEXCEL GCE MATHEMATICS

General Instructions for Marking

- 1. The total number of marks for the paper is 75.
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
- **M** marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- **B** marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.
- 3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes and can be used if you are using the annotation facility on ePEN.

- bod benefit of doubt
- ft follow through
- the symbol \uparrow will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- dep dependent
- indep independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper
- The second mark is dependent on gaining the first mark
- 4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.

General Principles for Pure Mathematics Marking

(But note that specific mark schemes may sometimes override these general principles).

Method mark for solving 3 term quadratic:

1. Factorisation

$$(x^2 + bx + c) = (x + p)(x + q), \text{ where } |pq| = |c| \text{ , leading to } x = \dots$$

$$(ax^2 + bx + c) = (mx + p)(nx + q), \text{ where } |pq| = |c| \text{ and } |mn| = |a| \text{ , leading to } x = \dots$$

2. Formula

Attempt to use <u>correct</u> formula (with values for a, b and c), leading to x = ...

3. Completing the square

Solving
$$x^2 + bx + c = 0$$
: $(x \pm \frac{b}{2})^2 \pm q \pm c$, $q \neq 0$, leading to $x = ...$

Method marks for differentiation and integration:

1. <u>Differentiation</u>

Power of at least one term decreased by 1. ($x^n \rightarrow x^{n-1}$)

2. Integration

Power of at least one term increased by 1. ($x^n \rightarrow x^{n+1}$)

Use of a formula

Where a method involves using a formula that has been learnt, the advice given in recent examiners' reports is that the formula should be quoted first.

Normal marking procedure is as follows:

<u>Method mark</u> for quoting a correct formula and attempting to use it, even if there are mistakes in the substitution of values.

Where the formula is <u>not</u> quoted, the method mark can be gained by implication from <u>correct</u> working with values, but may be lost if there is any mistake in the working.

Exact answers

Examiners' reports have emphasised that where, for example, an <u>exact</u> answer is asked for, or working with surds is clearly required, marks will normally be lost if the candidate resorts to using rounded decimals.

Answers without working

The rubric says that these <u>may</u> not gain full credit. Individual mark schemes will give details of what happens in particular cases. General policy is that if it could be done "in your head", detailed working would not be required.

Summer 2012 6667 Further Pure FP1 Mark Scheme

Question Number	Scheme	Notes	Marks
	$f(x) = 2x^3 - 6x^2 - 7$	x-4	
1. (a)	$f(4) = \underline{128 - 96 - 28 - 4 = 0}$	128 - 96 - 28 - 4 = 0	B1
	<u>Just</u> $2(4)^3 - 6(4)^2 - 7(4) - 4 = 0$ or $2(64)$	-6(16)-7(4)-4=0 is B0	
	But $2(64) - 6(16) - 7(4) - 4 = 128 - 128 = 0 \text{ or } 2(4)^3$	$-6(4)^2 - 7(4) - 4 = 4 - 4 = 0$ is B1	
	There must be sufficient working to	$o \underline{show} that f(4) = 0$	
			[1]
(b)	$f(4) = 0 \implies (x - 4)$ is a factor.		
(0)		M1: $(2x^2 + kx + 1)$	
	$f(x) = (x - 4)(2x^2 + 2x + 1)$	Uses inspection or long division or compares coefficients and $(x-4)$ (not $(x + 4)$) to obtain a quadratic factor of this form.	M1A1
		A1: $(2x^2 + 2x + 1)$ cao	
	So, $x = \frac{-2 \pm \sqrt{4 - 4(2)(1)}}{2(2)}$ $(2)\left(x^2 + x + \frac{1}{2}\right) = 0 \Rightarrow (2)\left(\left(x \pm \frac{1}{2}\right)^2 \pm k \pm \frac{1}{2}\right) k \neq 0 \Rightarrow x = 0$	Use of correct quadratic formula for their <u>3TQ</u> or completes the square.	M1
	Allow an attempt at factorisation provided the	usual conditions are satisfied and	
	proceeds as far as	<i>x</i> = 	
	$\Rightarrow x = \frac{-2 \pm \sqrt{-4}}{2(2)}$ $\Rightarrow x = 4, \frac{-2 \pm 2i}{4}$		
	$\Rightarrow x = 4, \ \frac{-2 \pm 2i}{4}$	All three roots stated somewhere in (b). Complex roots must be at least as given but apply isw if necessary.	A1
			[4]
			5 marks

Question Number	Scheme	Notes	Marks
2. (a)	$\mathbf{A} = \begin{pmatrix} 3 & 1 & 3 \\ 4 & 5 & 5 \end{pmatrix}, \mathbf{B} = \begin{pmatrix} 1 & 1 \\ 1 & 2 \\ 0 & -1 \end{pmatrix}$		
	$\mathbf{AB} = \begin{pmatrix} 3 & 1 & 3 \\ 4 & 5 & 5 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 2 \\ 0 & -1 \end{pmatrix}$		
	$= \begin{pmatrix} 3+1+0 & 3+2-3 \\ 4+5+0 & 4+10-5 \end{pmatrix}$	A correct method to multiply out two matrices. Can be implied by two out of four correct (unsimplified) elements in a dimensionally correct matrix. A 2x2 matrix with a number or a calculation at each corner.	M1
	$= \begin{pmatrix} 4 & 2 \\ 9 & 9 \end{pmatrix}$	Correct answer	A1
	A correct answer with no wor	rking can score both marks	
			[2]
(b)	$\mathbf{C} = \begin{pmatrix} 3 & 2 \\ 8 & 6 \end{pmatrix}, \ \mathbf{D} = \begin{pmatrix} 5 & 2k \\ 4 & k \end{pmatrix}$), where k is a constant,	
	$\mathbf{C} + \mathbf{D} = \begin{pmatrix} 3 & 2 \\ 8 & 6 \end{pmatrix} + \begin{pmatrix} 5 & 2k \\ 4 & k \end{pmatrix} = \begin{pmatrix} 8 & 2k+2 \\ 12 & 6+k \end{pmatrix}$	An attempt to add C to D. Can be implied by two out of four correct (unsimplified) elements in a <u>dimensionally correct</u> matrix.	M1
	E does not have an inverse \Rightarrow det E = 0.		
	8(6+k) - 12(2k+2)	Applies " $ad - bc$ " to E where E is a 2x2 matrix.	M1
	8(6+k) - 12(2k+2) = 0	States or applies $det(\mathbf{E}) = 0$ where $det(\mathbf{E}) = ad - bc$ or $ad + bc$ only and \mathbf{E} is a 2x2 matrix.	M1
	Note $8(6+k) - 12(2k+2) = 0$ or $8(6+k) - 12(2k+2) = 0$	k) = 12(2 k + 2) could score both M's	
	48 + 8k = 24k + 24 $24 = 16k$		
	$k = \frac{3}{2}$		A1 oe
	2		[4]
			6 marks

Question Number	Scheme	Notes	Marks
3.	$f(x) = x^2 + \frac{3}{4\sqrt{x}} - 3x - 7, x > 0$		
	$f(x) = x^2 + \frac{3}{4}x^{-\frac{1}{2}} - 3x - 7$		
	$f'(x) = 2x - \frac{3}{8}x^{-\frac{3}{2}} - 3\{+0\}$	M1: $x^n \to x^{n-1}$ on at least one term A1: Correct differentiation.	M1A1
	$f(4) = -2.625 = -\frac{21}{8} = -2\frac{5}{8}$ $or \ 4^2 + \frac{3}{4\sqrt{4}} - 3 \times 4 - 7$	f (4) = -2.625 A correct evaluation of f(4) or a correct numerical expression for f(4). This can be implied by a correct answer below but in all other cases, f(4) must be seen explicitly evaluated or as an expression.	B1
	$f'(4) = 4.953125 = \frac{317}{64} = 4\frac{61}{64}$	Attempt to insert $x = 4$ into their $f'(x)$. Not dependent on the first M but must be what they think is $f'(x)$.	M1
	$\alpha_2 = 4 - \left(\frac{"-2.625"}{"4.953125"}\right)$	Correct application of Newton-Raphson using their values.	M1
	$= 4.529968454 \left(= \frac{1436}{317} = 4\frac{168}{317} \right)$		
	= 4.53 (2 dp)	4.53 cso	A1 cao
	Note that the kind of errors that are being made in differentiating are sometimes giving 4.53 but the final mark is cso and the final A1 should not be awarded in these cases.		
	Ignore any furth A correct derivative followed by $\alpha_2 = 4$		
			[6] 6 marks

Question	Scheme	Notes	Marks
Number	п		
4. (a)	$\sum_{r=1}^{\infty} \left(r^3 + 6r - 3 \right)$		
		M1; An attempt to use at least one of the standard formulae correctly in summing at least 2 terms of $r^3 + 6r - 3$	
	$= \frac{1}{4}n^{2}(n+1)^{2} + 6.\frac{1}{2}n(n+1) - 3n$	A1: Correct underlined expression.	M1A1B1
		$B1:-3 \to -3n$	
	$= \frac{1}{4}n^2(n+1)^2 + 3n^2 + 3n - 3n$		
	If any marks have been lost, no furth	ner marks are available in part (a)	
	$= \frac{1}{4}n^{2}(n+1)^{2} + 3n^{2}$ $= \frac{1}{4}n^{2}((n+1)^{2} + 12)$	Cancels out the $3n$ and attempts to factorise out at least $\frac{1}{4}n$.	dM1
	$= \frac{1}{4}n^2 \left(n^2 + 2n + 13\right) (AG)$	Correct answer with no errors seen.	A1 *
	Provided the first 3 marks are scored, allow the net algebraic equivalence. E.g. showing that both		
	$\frac{1}{4} n^2 (n+1)^2 + 6 \cdot \frac{1}{2} n (n+1) - 3n$ and $\frac{1}{4} n^2 (n^2 + 1) = \frac{1}{4} n^2 (n+1)^2 + \frac{1}{4} n$	$(2n + 13) = \frac{1}{4}n^4 + \frac{1}{2}n^3 + \frac{13}{4}n^2$	
	There are no marks for proof by induct		
			[5]
(b)	$S_n = \sum_{r=16}^{30} (r^3 + 6r - 3) = S_{30} - S_{15}$		
	$= \frac{1}{4} (30)^2 (30^2 + 2(30) + 13) - \frac{1}{4} (15)^2 (15^2 + 2(15)^2)$	$\underline{\text{Use}} \text{ of } S_{30} - S_{15} \text{ or } S_{30} - S_{16}$	M1
	NB They must be using $S_n = \frac{1}{4}n^2$ (n	$n^2 + 2n + 13$ not $S_n = n^3 + 6n - 3$	
	= 218925 - 15075		
	= 203850	203850	A1 cao
	NB $S_{30} - S_{16} = 218925 - 1926$	4 = 199661 (Scores M1 A0)	
			[2]
			7 marks

Question Number	Scheme	Notes	Marks
5.	$C\colon y^2 = 8x \Rightarrow $	$a = \frac{8}{4} = 2$	
(a)	$PQ = 12 \implies \text{By symmetry } y_P = \frac{12}{2} = \underline{6}$	$y = \underline{6}$	B1
			[1]
(b)	$y^2 = 8x \implies 6^2 = 8x$	Substitutes their y-coordinate into $y^2 = 8x$.	M1
	$\Rightarrow x = \frac{36}{8} = \frac{9}{2}$ (So <i>P</i> has coordinates $(\frac{9}{2}, 6)$)	$\Rightarrow x = \frac{36}{8} \text{ or } \frac{9}{2}$	A1 oe
	` '		[2]
(c)	Focus $S(2, 0)$	Focus has coordinates (2, 0). Seen or implied. Can score anywhere.	B1
	Gradient $PS = \frac{6-0}{\frac{9}{2}-2} \left\{ = \frac{6}{\left(\frac{5}{2}\right)} = \frac{12}{5} \right\}$	Correct method for finding the gradient of the line segment <i>PS</i> . If no gradient formula is quoted and the gradient is incorrect, score M0 but allow this mark if there is a clear use of $\frac{y_2 - y_1}{x_2 - x_1}$ even if their coordinates are 'confused'.	M1
	Either $y-0=\frac{12}{5}(x-2)$ or $y-6=\frac{12}{5}(x-\frac{9}{2})$; or $y=\frac{12}{5}x+c$ and $0=\frac{12}{5}(2)+c \implies c=-\frac{24}{5}$;	$y - y_1 = m(x - x_1)$ with 'their <i>PS</i> gradient' and their (x_1, y_1) Their PS gradient must have come from using P and S (not calculus) and they must use their P or S as (x_1, y_1) . or uses $y = mx + c$ with 'their gradient' in an attempt to find c. Their PS gradient must have come from using P and S (not calculus) and they must use their P or S as (x_1, y_1) .	M1
	l: 12x - 5y - 24 = 0	12x - 5y - 24 = 0	A1
	Allow any equivalent form e.g. $k(12x)$	-5y - 24 = 0 where <i>k</i> is an integer	
			[4]
			7 marks

Question Number	Scheme	Notes	Marks
6.	$f(x) = \tan\left(\frac{x}{2}\right) + 3x - 6,$	$-\pi < x < \pi$	
(a)	f(1) = -2.45369751 f(2) = 1.557407725	Attempts to evaluate both f(1) and f(2) and evaluates at least one of them correctly to awrt (or trunc.) 2 sf. Nm	M1
	Sign change (and $f(x)$ is continuous) therefore a root α is between $x = 1$ and $x = 2$.	Both values correct to awrt (or trunc.) 2 sf, sign change (or a statement which implies this e.g2.453 < 0 < 1.5574) and conclusion.	A1
			[2]
(b)	$\frac{\alpha - 1}{"2.45369751"} = \frac{2 - \alpha}{"1.557407725"}$ or $\frac{"2.45369751" + "1.557407725"}{1} = \frac{"2.45369751"}{\alpha - 1}$	Correct linear interpolation method. It must be a <u>correct statement</u> using their f(2) and f(1). Can be implied by working below.	M1
	If any "negative lengths" are	e used, score M0	
	$\alpha = 1 + \left(\frac{"2.45369751"}{"1.557407725" + "2.45369751"}\right)1$ $= \frac{6.464802745}{4.011105235}$	Correct follow through expression to find α .Method can be implied here. (Can be implied by awrt 1.61.)	A1 √
	= 1.611726037	awrt 1.61	A1
			[3]
			5 marks
	Special Case – Use of	· · ·	
	f(1) = -2.991273132 f(2) = 0.017455064	Attempts to evaluate both f(1) and f(2) and evaluates at least one of them correctly to awrt (or trunc.) 2 sf.	M1A0
	$\frac{\alpha - 1}{"2.991273132"} = \frac{2 - \alpha}{"0.017455064"}$	Correct linear interpolation method. It must be a <u>correct statement</u> using their f(2) and f(1). Can be implied by working below.	M1
	If any "negative lengths" are		
	$\alpha = 1 + \left(\frac{"2.99127123"}{"0.017455064" + "2.99127123"}\right)1$	Correct follow through expression to find α . Method can be implied here. (Can be implied by awrt 1.99.)	A1√
	= 1.994198523		A0

Question			
Number	Scheme	Notes	Marks
7. (a)	$\arg z = -\tan^{-1}\left(\frac{\sqrt{3}}{2}\right)$	$\tan^{-1}\left(\pm\frac{\sqrt{3}}{2}\right)$ or $\tan^{-1}\left(\pm\frac{2}{\sqrt{3}}\right)$ seen or evaluated	M1
	Awrt ± 0.71 or awrt ± 0.86 can be taken	as evidence for the method mark.	
	Or ± 40.89 or ± 49.10 if v = -0.7137243789 = -0.71 (2 dp)	working in degrees awrt -0.71 or awrt 5.57	A1
	(=)	`	711
	NB $\tan\left(\frac{\sqrt{3}}{2}\right) = 1.18$ and $\tan\left(\frac{2}{\sqrt{3}}\right)$	= 2.26 and both score M0	
(1)			[2]
(b)	$z^{2} = (2 - i\sqrt{3})(2 - i\sqrt{3})$ $= 4 - 2i\sqrt{3} - 2i\sqrt{3} + 3i^{2}$	An attempt to multiply out the brackets to give four terms (or four terms implied).	M1
	$=2-i\sqrt{3}+(4-4i\sqrt{3}-3)$	M1: An understanding that $i^2 = -1$ and an	
	$=2-i\sqrt{3}+\left(1-4i\sqrt{3}\right)$	attempt to add z and put in the form $a + bi\sqrt{3}$	
	\ /	u i biy s	M1A1
	$= 3 - 5i\sqrt{3}$ (Note: $a = 3, b = -5$.)	$A1: 3 - 5i\sqrt{3}$	
	$z + z^{2} = 2 - i\sqrt{3} + (4 - 4i\sqrt{3} + 3) = 9 - 5i$	$\sqrt{3}$ scores M1M0A0 (No evidence of $i^2 = -1$)	
			[3]
	$\frac{z+7}{z-1} = \frac{2-i\sqrt{3}+7}{2-i\sqrt{3}-1}$	Substitutes $z = 2 - i\sqrt{3}$ into both	M1
(c)	$z-1$ $2-i\sqrt{3}-1$	numerator and denominator.	
	$(9 - i\sqrt{3})$ $(1 + i\sqrt{3})$	Simplifies $\frac{z+7}{z-1}$	
	$= \frac{\left(9 - i\sqrt{3}\right)}{\left(1 - i\sqrt{3}\right)} \times \frac{\left(1 + i\sqrt{3}\right)}{\left(1 + i\sqrt{3}\right)}$	and multiplies by $\frac{\text{their } (1+i\sqrt{3})}{\text{their } (1+i\sqrt{3})}$	d M1
	$= \frac{9 + 9i\sqrt{3} - i\sqrt{3} + 3}{1 + 3}$	Simplifies realising that a real number is	
	_	needed in the denominator and applies $i^2 = -1$ in their numerator expression and	M1
	$=\frac{12+8i\sqrt{3}}{4}$	denominator expression.	
	<u> </u>	$3 + 2i\sqrt{3}$	A1
			[4]
(d)	$w = \lambda - 3i$, and $arg(4 - 3i)$	$-5i + 3w) = -\frac{\pi}{2}$	
	(4-5i+3w=4+3w=4+3w=4+3w=4+3w=4+3w=4+3w=4+3w=4	+ 3 <i>λ</i> – 14i)	
	So real part of $(4 - 5i + 3w) = 0$ or $4 + 3\lambda = 0$	States real part of $(4 - 5i + 3w) = 0$ or $4 + 3\lambda = 0$	M1
	So, $\lambda = -\frac{4}{3}$	$-\frac{4}{3}$	A1
			[2]
	Allow $\pm \left(\frac{14}{3\lambda + 4}\right) = \pm \infty \Rightarrow 3\lambda$	$+4 = 0 \text{ M1} \Rightarrow \lambda = -\frac{4}{3} \text{ A1}$	
	\	·	11 marks
		<u> </u>	

Question Number	Scheme	Notes	Marks
8.	$xy = c^2$ a	$t \left(ct, \frac{c}{t}\right)$.	
(a)	2	$\frac{dy}{dx} = k x^{-2}$ Correct use of product rule. The sum of two terms, one of which is correct and rhs = 0 their $\frac{dy}{dt} \times \left(\frac{1}{\text{their } \frac{dx}{dt}}\right)$	M1
	$\frac{dy}{dx} = -c^2 x^{-2} \text{ or } x \frac{dy}{dx} + y = 0 \text{ or } \frac{dy}{dx} = \frac{-c}{t^2} \cdot \frac{1}{c}$ or equivalent expressions	Correct differentiation	A1
	So, $m_T = \frac{\mathrm{d}y}{\mathrm{d}x} = -\frac{1}{t^2}$	$-\frac{1}{t^2}$	
	$y - \frac{c}{t} = -\frac{1}{t^2} (x - ct) \qquad (\times t^2)$	$y - \frac{c}{t}$ = their $m_T(x - ct)$ or $y = mx + c$ with their m_T and $(ct, \frac{c}{t})$ in an attempt to find 'c'. Their m_T must have come from calculus and should be a function of t or c or both c and t .	M1
	$x + t^2 y = 2ct$ (Allow $t^2 y + x = 2ct$)	Correct solution.	A1 *
	(a) Candidates who derive $x + t^2 y = 2ct$, by stating that $m_T = -\frac{1}{t^2}$, with no justification score <u>no</u> marks in (a).		
(b)	$y = 0 \implies x = 2ct \implies A(2ct, 0).$	x = 2ct, seen or implied.	B1
	$x = 0 \implies y = \frac{2ct}{t^2} \implies B\left(0, \frac{2c}{t}\right).$	$y = \frac{2ct}{t^2} \text{ or } \frac{2c}{t}, \text{ seen or implied.}$	B1
	Area $OAB = 36 \implies \frac{1}{2}(2ct)\left(\frac{2c}{t}\right) = 36$	Applies $\frac{1}{2}$ (their x)(their y) = 36 where x and y are functions of c or t or both (not x or y) and some attempt was made to substitute both $x = 0$ and $y = 0$ in the tangent to find A and B .	M1
	Do not allow the x and y coordinates of P to	be used for the dimensions of the triangle.	
	$\Rightarrow 2c^2 = 36 \Rightarrow c^2 = 18 \Rightarrow c = 3\sqrt{2}$	$c = 3\sqrt{2}$	A1
		Do not allow $c = \pm 3\sqrt{2}$	[4]
			8 marks

Question	Scheme	Notes	Marks
Number 9.	$\det \mathbf{M} = 3(-5) - (4)(2) = -15 - 8 = -23$		B1
(a)	detivi = 3(3) (4)(2) = 13 0 = <u>23</u>	<u>-23</u>	[1]
(b)	Therefore, $\begin{pmatrix} 3 & 4 \\ 2 & -5 \end{pmatrix} \begin{pmatrix} 2a - 7 \\ a - 1 \end{pmatrix} = \begin{pmatrix} 25 \\ -14 \end{pmatrix}$	Using the information in the question to form the matrix equation. Can be implied by any of the correct equations below.	M1
	Either, $3(2a - 7) + 4(a - 1) = 25$ or $2(2a - 7) - 5(a - 1) = -14$ or $3(2a - 7) + 4(a - 1) = 25 = 25 = 25 = 25 = 25 = 25 = 25 = 2$	Any one correct equation (unsimplified) inside or outside matrices	A1
	giving $a = 5$	a = 5	A1
			[3]
(c)	Area(ORS) = $\frac{1}{2}$ (6)(4); = 12 (units) ²	$M1:\frac{1}{2}(6)(Their a-1)$	M1A1
	2	A1: 12 cao and cso	
	Note A(6, 0) is sometimes misinterpreted as (0, 6) e.g.1/2x6x		
(4)	A === (OP/S/) + 22 × (12)	det Max (their ment (-) energy)	[2]
(d)	$Area(OR'S') = \pm 23 \times (12)$	$\pm \det \mathbf{M} \times \text{(their part } (c) \text{ answer)}$	M1
	A mostly of most impolaring the determinant meaning	$\frac{276}{4}$ (follow through provided area > 0)	A1√
	A method not involving the determinant requires 12)) and then a <u>correct</u> method for the area e.g. (2)		
			[2]
	Rotation; 90° anti-clockwise (or 270° clockwise)	B1: Rotation, Rotates, Rotate, Rotating (not turn)	
(e)	about (0, 0).	B1:90° anti-clockwise (or 270° clockwise)	B1;B1
		about (around/from etc.) $(0, 0)$	
			[2]
(f)	$\mathbf{M} = \mathbf{B}\mathbf{A}$	$\mathbf{M} = \mathbf{B}\mathbf{A}$, seen or implied.	M1
	$\mathbf{A}^{-1} = \frac{1}{(0)(0) - (1)(-1)} \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}; = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$	$\mathbf{A}^{-1} = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$	A1
	$\mathbf{B} = \begin{pmatrix} 3 & 4 \\ 2 & -5 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$	Applies \mathbf{M} (their \mathbf{A}^{-1})	M1
	$\mathbf{B} = \begin{pmatrix} -4 & 3 \\ 5 & 2 \end{pmatrix}$		A1
	NB some candidates state $\mathbf{M} = \mathbf{AB}$ and then calculate $\mathbf{A}^{-1}\mathbf{M}$. These could score M0A0 M		[4]
			14 marks
	Special c	ase	
(f)	M = AB	$\mathbf{M} = \mathbf{A}\mathbf{B}$, seen or implied.	M0
		$\mathbf{A}^{-1} = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$	A0
	$\mathbf{B} = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \begin{pmatrix} 3 & 4 \\ 2 & -5 \end{pmatrix} = \begin{pmatrix} 2 & -5 \\ -3 & -4 \end{pmatrix}$	Applies (their A^{-1}) M	M1A1ft

Question Number	Scheme	Notes	Marks
10.	$f(n) = 2^{2n-1} + 3^{2n-1}$ is divisible by 5.		
	$f(1) = 2^1 + 3^1 = 5,$	Shows that $f(1) = 5$.	B1
	Assume that for $n = k$, $f(k) = 2^{2k-1} + 3^{2k-1}$ is divisible by 5 for $k \in \phi^+$.		
	$f(k+1) - f(k) = 2^{2(k+1)-1} + 3^{2(k+1)-1} - (2^{2k-1} + 3^{2k-1})$	M1: Attempts $f(k+1) - f(k)$. A1: Correct expression for $\underline{f(k+1)}$ (Can be unsimplified)	M1A1
	$= 2^{2k+1} + 3^{2k+1} - 2^{2k-1} - 3^{2k-1}$		
	$= 2^{2k-1+2} + 3^{2k-1+2} - 2^{2k-1} - 3^{2k-1}$		
	$=4(2^{2k-1})+9(3^{2k-1})-2^{2k-1}-3^{2k-1}$	Achieves an expression in 2^{2k-1} and 3^{2k-1}	M1
	$=3(2^{2k-1})+8(3^{2k-1})$		
	$=3(2^{2k-1})+3(3^{2k-1})+5(3^{2k-1})$		
	$= 3f(k) + 5(3^{2k-1})$		
	$f(k+1) = 4f(k) + 5(3^{2k-1}) \text{ or}$ $4(2^{2k-1} + 3^{2k-1}) + 5(3^{2k-1})$	Where $f(k + 1)$ is correct and is clearly a multiple of 5.	A1
	If the result is true for $n = k$, then it is now true for $n = k+1$. As the result has shown to be true for $n = 1$, then the result is true for all n .	Correct conclusion at the end, at least as given, and all previous marks scored.	A1 cso
			[6]
	All methods should complete to $f(k + 1) =$ where $f(k + 1) = .$,	6 marks
	Note that there are many different ways of pro		

Appendix

- dM1 denotes a method mark which is dependent upon the award of the previous method mark.
- ddM1 denotes a method mark which is dependent upon the award of the previous two method marks.
- depM1* denotes a method mark which is dependent upon the award of M1*.
- ft denotes "follow through"
- cao denotes "correct answer only"
- aef denotes "any equivalent form"

Other Possible Solutions

Question Number	Scheme	Notes	Marks
Aliter 4.(a) Way 2	$\sum_{r=1}^{n} \left(r^3 + 6r - 3\right)$		
	$= \frac{1}{4}n^2(n+1)^2 + 6 \cdot \frac{1}{2}n(n+1) - 3n$	An attempt to use at least one of the standard formulae correctly. Correct underlined expression. $-3 \rightarrow -3n$	M1 A1 B1
	If any marks have been lost, no furth	er marks are available in part (a).	
	$= \frac{1}{4}n(n(n+1)^2 + 12(n+1) - 12)$ $= \frac{1}{4}n(n(n+1)^2 + 12n + 12 - 12)$ $= \frac{1}{4}n(n(n+1)^2 + 12n)$	Attempts to factorise out at least $\frac{1}{4}n$ from a <u>correct</u> expression and cancels the constant inside the brackets.	dM1
	$= \frac{1}{4}n^2 \left(n^2 + 2n + 13\right) $ (AG)	Correct answer	A1 *
			5 marks

Question Number	Scheme	Notes	Marks
Aliter 6.(b) Way 2	$y - f(2) = \frac{f(2) - f(1)}{2 - 1} (x - 2)$ $or y - f(1) = \frac{f(2) - f(1)}{2 - 1} (x - 1)$ $or y = \frac{f(2) - f(1)}{2 - 1} x + c \text{ with an attempt to find } c$	Correct straight line method. It must be a correct statement using their f(2) and f(1). Can be implied by working below.	M1
	NB 'm' = 4.0	11105235	
	$y = 0 \Rightarrow \alpha = \frac{f(2)}{f(1) - f(2)} + 2$ $or \alpha = \frac{f(1)}{f(1) - f(2)} + 1$	Correct follow through expression to find α . Method can be implied here. (Can be implied by awrt 1.61.)	A1 √
	= 1.611726037	awrt 1.61	A1
			[3]

Question Number	Scheme	Notes	Marks
Aliter 7. (b)	$z + z^2 = z(1+z)$		
Way 2	$= (2 - i\sqrt{3})(1 + (2 - i\sqrt{3}))$ $= (2 - i\sqrt{3})(3 - i\sqrt{3})$ $= 6 - 2i\sqrt{3} - 3i\sqrt{3} + 3i^{2}$	An attempt to multiply out the brackets to give four terms (or four terms implied).	M1
	$=6-2i\sqrt{3}-3i\sqrt{3}-3$	M1: An understanding that $i^2 = -1$ and an attempt to put in the form $a + bi\sqrt{3}$	M1
	$=3-5i\sqrt{3}$ (Note: $a=3, b=-5$.)	$3-5i\sqrt{3}$	A1
			[3]

Question Number	Scheme	Notes	Marks
Aliter 9. (b)	$\begin{vmatrix} a - 1 \end{vmatrix} \begin{vmatrix} -1A \end{vmatrix}$		
Way 2	Therefore, $\begin{pmatrix} 3 & 4 \\ 2 & -5 \end{pmatrix} \begin{pmatrix} 2a - 7 \\ a - 1 \end{pmatrix} = \begin{pmatrix} 25 \\ -14 \end{pmatrix}$ $\begin{pmatrix} 2a - 7 \end{pmatrix} \begin{pmatrix} 3 & 4 \end{pmatrix}^{-1} \begin{pmatrix} 25 \end{pmatrix}$	Using the information in the question to form the matrix equation. Can be implied by any of the correct equations below.	M1
	or $\binom{2a-7}{a-1} = \binom{3}{2} + \binom{3}{-14} = \binom{25}{-14}$ the correct equations below.		
	Either, $(2a - 7) = 3$ or $(a - 1) = 4$	Any one correct equation.	A1
	giving $a = 5$	a = 5	A1
			[3]

Question Number	Scheme	Notes	Marks
Aliter 9. (c)			M1
Way 2 Determinant	= 12		A1
			[2]

Question Number	Scheme	Notes	Marks
<i>Aliter</i> 9. (d)	Area ORS = $\frac{1}{2}\begin{vmatrix} 18 & 25 & 0 & 18 \\ 12 & -14 & 0 & 12 \end{vmatrix}$ = $\frac{1}{2} (18 \times -14 - 12 \times 25 + 0 - 0 + 0 - 0) $	Correct calculation	M1
Way 2 Determinant	= 276		A1 √
			[2]

Question Number	Scheme Notes		Marks
Aliter	M = BA	$\mathbf{M} = \mathbf{B}\mathbf{A}$, seen or implied.	M1
9. (f) Way 2		$\begin{pmatrix} 3 & 4 \\ 2 & -5 \end{pmatrix} = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix},$ with constants to be found.	A1
	$ \begin{pmatrix} 3 & 4 \\ 2 & -5 \end{pmatrix} = \begin{pmatrix} b & -a \\ d & -c \end{pmatrix} $	$\begin{pmatrix} 3 & 4 \\ 2 & -5 \end{pmatrix} = \text{their } \begin{pmatrix} b & -a \\ d & -c \end{pmatrix} \text{ with at}$ least two elements correct on RHS.	M1
	$\mathbf{B} = \begin{pmatrix} -4 & 3 \\ 5 & 2 \end{pmatrix}$	Correct matrix for B of $\begin{pmatrix} -4 & 3 \\ 5 & 2 \end{pmatrix}$ or $a = -4$, $b = 3$, $c = 5$, $d = 2$	A1
			[4]

Question Number	Scheme	Notes	Marks
Aliter	$f(n) = 2^{2n-1} + 3^{2n-1}$ is divisible by 5.		
10. Way 2	$f(1) = 2^1 + 3^1 = 5$	Shows that $f(1) = 5$.	B1
	Assume that for $n = k$,		
	$f(k) = 2^{2k-1} + 3^{2k-1}$ is divisible by 5 for		
	$k \in \mathcal{C}^+$.	M1. Augusto f(I + 1)	
	$f(k+1) = 2^{2(k+1)-1} + 3^{2(k+1)-1}$	M1: Attempts $f(k + 1)$. A1: Correct expression for $\underline{f(k + 1)}$ (Can be unsimplified)	M1A1
	$= 2^{2k+1} + 3^{2k+1}$		
	$=4(2^{2k-1})+9(3^{2k-1})$	Achieves an expression in 2^{2k-1} and 3^{2k-1}	M1
	$f(k+1) = 4(2^{2k-1} + 3^{2k-1}) + 5(3^{2k-1})$ or $f(k+1) = 4f(k) + 5(3^{2k-1})$ or $f(k+1) = 9f(k) - 5(2^{2k-1})$ or $f(k+1) = 9(2^{2k-1} + 3^{2k-1}) - 5(2^{2k-1})$	Where $f(k + 1)$ is correct and is clearly a multiple of 5.	A1
	If the result is true for $n = k$, then it is now true for $n = k+1$. As the result has shown to be true for $n = 1$, then the result is true for all n .	Correct conclusion at the end , at least as given, and all previous marks scored.	A1 cso
			[6]

Question Number	Scheme Notes		Marks
Aliter 10.	$f(n) = 2^{2n-1} + 3^{2n-1}$ is divisible by 5.		
Way 3	$f(1) = 2^1 + 3^1 = 5,$	Shows that $f(1) = 5$.	B1
	Assume that for $n = k$, $f(k) = 2^{2k-1} + 3^{2k-1}$ is divisible by 5 for $k \in \phi^+$.		
	$f(k+1) + f(k) = 2^{2(k+1)-1} + 3^{2(k+1)-1} + 2^{2k-1} + 3^{2k-1}$	M1: Attempts $f(k+1) + f(k)$. A1: Correct expression for $\underline{f(k+1)}$ (Can be unsimplified)	M1A1
	$= 2^{2k+1} + 3^{2k+1} + 2^{2k-1} + 3^{2k-1}$		
	$= 2^{2k-1+2} + 3^{2k-1+2} + 2^{2k-1} + 3^{2k-1}$		
	$=4(2^{2k-1})+2^{2k-1}+9(3^{2k-1})+3^{2k-1}$	Achieves an expression in 2^{2k-1} and 3^{2k-1}	M1
	$=5(2^{2k-1})+10(3^{2k-1})$		
	$= 5(2^{2k-1}) + 5(3^{2k-1}) + 5(3^{2k-1})$		
	$= 5f(k) + 5(3^{2k-1})$		
	$f(k+1) = 4f(k) + 5(3^{2k-1}) \text{ or}$ $4(2^{2k-1} + 3^{2k-1}) + 5(3^{2k-1})$	Where $f(k + 1)$ is correct and is clearly a multiple of 5.	A1
	If the result is true for $n = k$, then it is now true for $n = k+1$. As the result has shown to be true for $n = 1$, then the result is true for all n .	Correct conclusion at the end , at least as given, and all previous marks scored.	A1 cso
			[6]
			6 marks

Question Number	Scheme	Notes	Marks
Aliter 10.	$f(n) = 2^{2n-1} + 3^{2n-1}$ is divisible by 5.		
Way 4	$f(1) = 2^1 + 3^1 = 5,$	Shows that $f(1) = 5$.	B1
	Assume that for $n = k$, $f(k) = 2^{2k-1} + 3^{2k-1}$ is divisible by 5 for $k \in \phi^+$.		
	f(k+1) = f(k+1) + f(k) - f(k)		
	$f(k+1) = 2^{2(k+1)-1} + 3^{2(k+1)-1} + 2^{2k-1} + 3^{2k-1} - (2^{2k-1} + 3^{2k-1})$	M1: Attempts $f(k+1) + f(k) - f(k)$	M1A1
	$f(k+1) = 2^{2(k+1)} + 3^{2(k+1)} + 2^{2(k+1)} + 3^{2(k+1)} + 3^{2(k+1)}$	A1: Correct expression for $\underline{f(k+1)}$ (Can be unsimplified)	
	$=4(2^{2k-1})+9(3^{2k-1})+2^{2k-1}+3^{2k-1}-(2^{2k-1}+3^{2k-1})$	Achieves an expression in 2^{2k-1} and 3^{2k-1}	M1
	$= 5(2^{2k-1}) + 10(3^{2k-1}) - (2^{2k-1} + 3^{2k-1})$		
	$=5((2^{2k-1})+2(3^{2k-1}))-(2^{2k-1}+3^{2k-1})$		
	$=5((2^{2k-1})+2(3^{2k-1}))-f(k) \text{ or } 5((2^{2k-1})+2(3^{2k-1}))-(2^{2k-1}+3^{2k-1})$	Where $f(k + 1)$ is correct and is clearly a multiple of 5.	A1
	If the result is true for $n = k$, then it is now true for $n = k+1$. As the result has shown to be true for $n = 1$, then the result is true for all n .	Correct conclusion at the end, at least as given, and all previous marks scored.	A1 cso
			[6]
			6 marks

Further copies of this publication are available from Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN

Telephone 01623 467467
Fax 01623 450481
Email <u>publication.orders@edexcel.com</u>
Order Code UA032237 Summer 2012

For more information on Edexcel qualifications, please visit our website $\underline{www.edexcel.com}$

Pearson Education Limited. Registered company number 872828 with its registered office at Edinburgh Gate, Harlow, Essex CM20 2JE

